## EXA-SCALE CHALLENGES AND OPPORTUNITIES FROM THE ATMOSPHERIC CHEMISTRY AND CHEMISTRY CLIMATE MODELLING PERSPECTIVE

Patrick Jöckel, DLR Institute of Atmospheric Physics, ESM Department

DKRZ User Workshop, Oct 12, 2022, Hamburg

Patrick Jöckel, Institut für Physik der Atmosphäre, 12.10.2022

#### **Atmospheric Chemistry**





Patrick Jöckel, Institut für Physik der Atmosphäre, 12.10.2022



### **Additional processes**



- Tracers (=prognostic variables) describing the chemical compounds (large scale advection, convective transport, diffusion, ...)
- Kinetic system(s) describing the chemical reactions in gas-, liquid-, and aerosol phase
- calculation of photolysis rates and heterogeneous reaction rates (incl. PSCs)
- aerosol micro-physics and interaction with clouds
- Sources of chemical compounds
  - Prescribed gridded data of emission fluxes (mostly reactive species), and/or
  - Prescribed gridded lower boundary condition of mixing ratio (mostly long lived)
  - on-line calculation (lightning NOx, dust, sea-salt aerosol, biogenic organics, soil-NOx, air-sea exchange, ...)
- Sinks of chemical compounds
  - dry deposition
  - wet deposition
  - sedimentation (aerosol)
- Feedback on radiation, hydrological cycle, clouds, …

## + additional on-line diagnostics

#### Number of prognostic variables



|                                                                                                        | GCM                 | ССМ                                               | CCM+                                                        | CCM+AQ                                                                      |  |
|--------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| Stratospheric chemistry                                                                                |                     | Ozone + CH <sub>4</sub> /H <sub>2</sub> O<br>PSCs | Ozone + CH <sub>4</sub> /H <sub>2</sub> O<br>PSCs<br>+ VSLS | Ozone + $CH_4/H_2O$<br>PSCs<br>+ VSLS<br>+ sulphur cycle                    |  |
| <ul><li>Tropospheric chemistry</li><li>gas phase</li><li>aqueous phase</li><li>aerosol phase</li></ul> | <br><br>            | <br>                                              | HOx/NOx , C <sub>4</sub> +<br>Isoprene<br>++<br>            | + >C <sub>5</sub> + S<br>+ ~C <sub>4</sub> + S +<br>+ ~C <sub>4</sub> + S + |  |
| # of prognostic variables                                                                              | ~ 10                | ~ 50                                              | ~100 - 500                                                  | 2500                                                                        |  |
| # chemical reactions                                                                                   |                     | < 100 + 0 + 0                                     | ~ 300 + ~100 + 0                                            | ~ 2000 + ~300 +<br>~300                                                     |  |
|                                                                                                        |                     |                                                   | CCMI + CMIP6                                                |                                                                             |  |
| Patrick Jöckel,<br>nstitut für Physik<br>der Atmosphäre,<br>12.10.2022                                 | /IESSy<br>Consortiu | Im ESM<br>Advanced<br>Earth Syste<br>Capacity     | m Modelling                                                 | le<br>delling chemistry-climate model initia                                |  |

#### Number of prognostic variables



|                                                                      | GCM                 | ССМ                                               | CCM+                                                        | CCM+AQ                                                   |
|----------------------------------------------------------------------|---------------------|---------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|
| Stratospheric chemistry                                              |                     | Ozone + CH <sub>4</sub> /H <sub>2</sub> O<br>PSCs | Ozone + CH <sub>4</sub> /H <sub>2</sub> O<br>PSCs<br>+ VSLS | Ozone + $CH_4/H_2O$<br>PSCs<br>+ VSLS<br>+ sulphur cycle |
| Tropospheric chemistry                                               |                     | x 10                                              |                                                             |                                                          |
| memory/core &                                                        |                     |                                                   | HOx/NOx , C <sub>4</sub> +<br>Isoprene                      | + >C <sub>5</sub> + S<br>+ ~C <sub>4</sub> + S +         |
| I/O                                                                  |                     |                                                   | ++                                                          | + ~C <sub>4</sub> + S +                                  |
| # of prognostic variables                                            | ~ 10                | ~ 50                                              | ~100 - 500                                                  | 2500                                                     |
| # chemical reactions                                                 | FL OP               | 0 + 0 + 0                                         | ~ 300 + ~100 + 0                                            | ~ 2000 + ~300 +<br>~300                                  |
|                                                                      |                     |                                                   | CCMI + CMIP6                                                |                                                          |
| Patrick Jöckel,<br>hstitut für Physik<br>er Atmosphäre,<br>2.10.2022 | /IESSy<br>Consortiu | Im ESM<br>Advanced<br>Earth Syste<br>Capacity     | m Modelling                                                 | le<br>delling                                            |

#### Wall clock time per simulated time step Example: EMAC T42L90MA, Δt = 12 min, RD1SD-made3-01 512 MPI tasks on 4 levante nodes







- CPU time
- wall-clock time reduced by 5%
- not yet distributed

#### Profile



MOM

(courtesy of T. Kirfel (FZJ-IEK8), K. Hartung (DLR-PA))

#### CCMI-2

| Submodel | Process                                 | Using KPP | % of<br>subgrid_loop | % of<br>subgrid_loop |
|----------|-----------------------------------------|-----------|----------------------|----------------------|
| MECCA    | Gas phase chemistry                     | Yes       | 67.9                 | 83.6                 |
| SCAV     | Wet deposition & liquid phase chemistry | Yes       | 16.0                 | 8.3                  |
| CONVECT  | Convection                              |           | 4.8                  | 2.3                  |
| CVTRANS  | Convection tracer transport             |           | 4.8                  | 4.5                  |
| RAD      | Radiation                               |           | 1.4                  | 0.2                  |
| E5VDIFF  | Vertical turbulent exchange             |           | 1.2                  | 0.5                  |
| MSBM     | Multiphase stratospheric box model      |           | 1.0                  | 0.1                  |
| JVAL     | Photolysis rate                         |           | 0.6                  | 0.1                  |





Atmospheric Chemistry CCM

# **CO**SMO models nested *n* times

- consistency (through common submodels)
- dynamical & chemical boundary conditions consistent on short time scales •
- multiple nests possible
- external coupling: name space & (almost) arbitrary grid sizes possible •

Patrick Jöckel Institut für Physik der Atmosphäre 12.10.2022

## **On-line nesting: Example**



CH<sub>4</sub> forecast for CoMet 1.0 flight campaign

(Nickl et al., GMD, 2020)

Patrick Jöckel, Institut für Physik der Atmosphäre, 12.10.2022

(b) TIME : 01-JUN-2018 06:20



## **Opportunities on Exa-Scale HPC Systems**



- increased resolution (globally) and/or more/finer nested regions (Note: "lag" behind standard GCMs w.r.t. global resolution will probably remain!)
- longer simulated time spans with nested regions (decades)
- more detailed chemistry
  - beyond C<sub>4</sub>, SOA, …
  - isotopologues
- more detailed diagnostics (e.g. "tagging" of emissions by sector and region)
- ensemble simulations of CCMI / CMIP type with comprehensive atmospheric chemistry



Tackling the scientific questions of chemistry climate & air quality feedback require:

- higher resolution (globally !): ½ grid size → factor 8 operations
- more detailed chemical kinetics (# of species & reactions)
- ensemble (~10 members) simulations (to address the uncertainty!)
  - aim: integration of decades to centuries (pre-industrial to 2100) [CCMI, CMIP]
    - memory per core
    - FLOPs massively parallel / accelerated
      I/O asynchronous & parallel

#### **ODE Solver (kinetic Systems)**



- A + B → C + D; k(p,T,...) →  $\frac{d[A]}{dt} = -k(p,T,...)[A][B]$  → stiff<sup>1</sup> ODE system
- Solver: 3<sup>rd</sup> order Rosenbrock solver with automatic time-stepping
  - Fortran code automatically generated from equation system (KPP)
  - automatic time stepping within model time step length  $\Delta t$
  - the further away from the chemical equilibrium, the stiffer the system
  - the stiffer the system, the more (sub)time-steps are required
- In MESSy: different ODE solvers in operator splitting approach:
  - gas phase chemistry (MECCA)
  - aqueous phase chemistry (in clouds and rain, SCAV)
  - ice phase chemistry (SCAV)
  - aerosol phase chemistry (GMXE)

Dynamic Load Imbalance of ODE Solver (kinetic systems) Example: <u>liquid</u> phase (clouds & rain, LS & CV) [SCAV]





# of KPP steps (zonally summed)

#### Dynamic Load Imbalance of ODE Solver (kinetic systems) Example: <u>liquid</u> phase (clouds & rain, LS & CV) [SCAV]





# of KPP steps (vertically summed)





# Of KFF steps (zonany s

Patrick Jöckel, Institut für Physik der Atmosphäre, 12.10.2022

DLR



# of KPP steps (surface layer)



cos(solar zenith angle)



# of KPP steps (vertically summed)

#### Horizonal domain decomposition **Example: EMAC T42L90MA on 4 nodes of levante** 512 tasks $\rightarrow$ 16 x 32 $\rightarrow$ 16 columns per task





Patrick Jöckel, Institut für Physik der Atmosphäre, 12.10.2022

#### Number of KPP steps per task





#### Number of KPP steps per task





DI R



# of KPP steps (vertically summed)

#### **Dynamic Load Imbalance**



- "adaptive" parallel horizontal domain decomposition
  - $\rightarrow$  alternative decomposition for "chemistry"
    - 1<sup>st</sup> step: static  $\rightarrow$  YAXT
    - 2<sup>nd</sup> step: dynamic ?, scheduling for accelerators ?
  - challenge: transport of tracers (large scale advection) with its own "basemodel"-decomposition
    - frequent data transpositions create communication overhead!

#### or:

"use" idling cores for other "tasks", such as asynchronously scheduled I/O



CCMs are fundamentally different from GCMs w.r.t. HPC demands:

- x 10 .. x 100 more prognostic (and diagnostic) variables
  - larger memory/core and I/O requirements  $\rightarrow$  parallel & asynchronous I/O, data reduction
- more processes, in particular "expensive" kinetic solvers
  - CCMs require (at a given resolution) per simulated time span ~ 10x (or more) CPU-time
  - equivalent to doubling the resolution (at least!) → resolution sacrificed for detailed, explicit chemistry
  - external on-line nesting for increased regional resolution; arbitrary nesting steps
  - kinetics is "embarrassingly" parallel, but other processes (e.g. advection of tracers) are not
  - large dynamic load imbalance → requires dynamic parallel decomposition or asynchronous/specific scheduling

#### Impressum



Thema: Exa-scale challenges and opportunities from the atmospheric chemistry and chemistry climate modelling perspective

Datum: 12.10.2022

Autor: Patrick Jöckel

Institut: Institut für Physik der Atmosphäre Abteilung ESM

Bildcredits: Alle Bilder "DLR (CC BY-NC-ND 3.0)"