

JONATHAN WEYN (MICROSOFT, ECMWF)

ML + Weather: Two strategies?

ML + Weather: Two strategies?

Augmenting NWP

Post-processing and calibration
Super-resolution

• • • •

New models or replacement

Physics-free deep learning models Precipitation nowcasting

. . .

NWP post-processing: success

- Statistical post-processing is almost as old as NWP itself!
- Model Output Statistics (MOS) 1970s
- Successful adaptation of modern ML methods, employed across the industry

Karl et al. 1972

Operations

Operations design

 All about automation: not only inference, but also data extraction, quality control, model training, model validation

Budget for online model training

Avoid common pitfalls

Real-time data quality control (garbage in, garbage out)

Online model training (poor model generalization; performance decline)

Next in post-processing: Extreme events

- To protect life and property, key mission of any weather service, we must be able to forecast extreme events
- Key revolutions in NWP: ensemble forecasting and data assimilation
- Can machine learning utilize ensemble NWP to improve forecasts of extreme events? Can such a model be operationalized?

[Submitted on 15 Jul 2022 (v1), last revised 20 Sep 2022 (this version, v2)]

Machine learning applications for weather and climate need greater focus on extremes

Peter AG Watson

The ENS-10 benchmark

Ashkboos et al. (2022)

- Task: Predict ensemble of 48-hour forecasts for Z500, T850, T2 on a global, 0.5-degree grid
- ECMWF IFS model hindcasts (10 members) available for 20 years of training data

With ECMWF: Zied Ben Bouallegue, Matthew Chantry, Mariana Clare, Peter Dueben, Jesper Dramsch

Mean + Std is not enough: The ensemble transformer

- Finn, "Self-Attentive Ensemble Transformer", 2021
- Apply the transformer along the *ensemble* member dimension
- Member-by-member approach that applies corrections based on interactions with all other members
- Maintains physical realism of each ensemble member

PoET: a transformer U-net

Rankings

Table 2: Global mean CRPS and EECRPS on the ENS-10 test set (2016–2017) for baseline models with five (5-ENS) or ten (10-ENS) ensemble members.

		$Z500 [m^2 s^{-2}]$		T850 [K]		T2m [K]	
Metric	Model	5-ENS	10-ENS	5-ENS	10-ENS	5-ENS	10-ENS
CRPS	Raw	81.03	78.24	0.748	0.719	0.758	0.733
	EMOS	$79.08^{\pm0.739}$	$81.74^{\pm 6.131}$	$0.725^{\pm0.002}$	$0.756^{\pm0.052}$	$0.718^{\pm0.003}$	$0.749^{\pm0.054}$
	MLP	$75.84^{\pm0.016}$	$74.63^{\pm0.029}$	$0.701^{\pm 2e-4}$	$0.684^{\pm 4e-4}$	$0.684^{\pm 6e-4}$	$0.672^{\pm 5e-4}$
	LeNet	75.56 $^{\pm0.101}$	$74.41^{\pm0.109}$	$0.689^{\pm 2e-4}$	$0.674^{\pm 2e-4}$	$0.669^{\pm 7\mathrm{e}-4}$	$0.659^{\pm 4e-4}$
	U-Net	$76.66^{\pm0.470}$	$76.25^{\pm0.106}$	$0.687^{\pm0.003}$		$0.659^{\pm0.005}$	$0.644^{\pm0.006}$
	Transformer	$77.30^{\pm0.061}$	$74.79^{\pm0.118}$	$0.686^{\pm0.002}$	$0.665^{\pm0.002}$	$0.649^{\pm0.004}$	$0.626^{\pm0.004}$
ET U-net Transformer			73.97		0.650		

Expanded forecast performance

CRPS

CRPS SCORE

Ensemble post-processing: Summary

- The ensemble transformer can run on the full operational IFS ensemble, while preserving inter-member calibration improving ensemble metrics.
- While the operationalization process might be modeled on existing post-processing work, there are still notable challenges:
 - Manipulation and serving of very large datasets, especially at high resolution
 - Communicating to the public the risks and uncertainties of extreme events

ML + Weather: Two strategies?

Augmenting NWP

Post-processing and calibration Super-resolution

- - -

New models or replacement

Physics-free deep learning models

Precipitation nowcasting

...

Growing work on NWP replacement

WeatherBench (Rasp et al. 2020)

Weyn et al. (2020, 2021)

Why replace NWP?

- Efficiency
- Efficiency
- Did I mention efficiency?
- Seriously, NVIDIA's FourCastNet is 80,000x faster (per compute node) and 10,000x more energy efficient than a comparable ECMWF IFS simulation
- This enables
 - Very large ensemble forecasts
 - Data reproduction in near-real-time instead of archiving petabytes of data on slow storage

Active challenges

- Increasing physical realism
- Evidence of large ML-based ensembles picking up extreme events missed by NWP
- Adaptation to future climate

120

180

300

240

360

Tackling new problems: Precipitation nowcasting

- The convolutional LSTM architecture was created for radar nowcasting (Shi et al. 2015)
- Google's MetNet-2 integrated HRRR high-resolution regional NWP model for a hybrid approach (Espeholt et al. 2021)
- DeepMind + UK Met Office: Deep generative models of radar (Ravuri et al. 2021)
 - Chosen 89% of the time over competing methods by expert meteorologists

MS-Nowcasting

- ConvLSTM-style generator architecture
- Added adversarial loss using DGMR-style discriminators
- Condition forecasting layers with HRRR reflectivity forecast to inject hybrid model
- Several techniques such as channel stacking and dilated convolutions used to reduce memory/computation footprint

Forecaster

Operations

- Latest radar images from MRMS (in US) retrieved with about 2 min latency
- Model inference is controlled by a streaming pipeline based on a message queueing framework
 - streaming is not bound by performance of any single component
 - no additional I/O costs
- CONUS region is tiled into 8 sectors with small overlap
- Final product generation consists of making text summaries and shapes for maps

Concluding thoughts...

• When designing an operational machine-learning-based weather solution, it's important to always keep the end user in mind

Even for simple post-processing, it's necessary to have automation to continually improve forecasts

For nowcasting, speed is vital, as is real-time detection of issues

• There is very promising and exciting research in ensemble post-processing and model replacement, but to operationalize for the public, it will need effective communication