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ML + Weather: Two strategies”

Post-processing and calibration

til Augmeﬂtlng NWP Super-resolution

* Physics-constrained
deep learning models

* ML-based
parameterizations

Physics-free deep learning models

@ NeV\/ mOdelS or replacement Precipitation nowcasting
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NWP post-processing: success

« Statistical post-processing is almost as
old as NWP itself!

« Model Output Statistics (MOS) - 1970s

« Successful adaptation of modern ML
methods, employed across the industry
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Operations design

« All about automation: not only inference, but also data extraction, quality control, model

training, model validation

Budget for online model training

« Avoid common pitfalls
Real-time data quality control (garbage in, garbage out)

Online model training (poor model generalization; performance decline)



Next in post-processing: Extreme events

« To protect life and property, key mission of any weather service, we must be able to

forecast extreme events
« Key revolutions in NWP: ensemble forecasting and data assimilation

« Can machine learning utilize ensemble NWP to improve forecasts of extreme events? Can

such a model be operationalized?

FSubmitted on 15 Juf 2022 (1), last revised 20 Sep 2022 (this version, v2)]
Machine learning applications for weather and climate need greater focus on
extremes

Peter AG Watson



The ENS-10 benchmark

Ashkboos et al. (2022)

« Task: Predict ensemble of 48-hour forecasts for Z500, T850, T2 on a global, 0.5-degree
grid

« ECMWF IFS model hindcasts (10 members) available for 20 years of training data

Learned Model Output: Corrected Distribution Score: CRPS

|

Input: Ensemble Data (ENS-10) Ground-Truth Data (ERAS5)



With ECMWEF:

/ied Ben Bouallegue, Matthew
Chantry, Mariana Clare, Peter
Dueben, Jesper Dramsch

Mean + Std is not enough:
The ensemble transformer

Module / Eq. (1)

« Finn, "Self-Attentive Ensemble ERAS a ~
Transformer”, 2021 &— 5T

« Apply the transformer along the ensemble 4% | ®\
member dimension nx |l  Module |

sV Softmax/ Eq. (2)

« Member-by-member approach that applies [ LayerNorm | |~ I |
corrections based on interactions with all WValue Key  Query/
other members Embedding | ... ...

: . . . 1 x 1 Convolution

« Maintains physical realism of each 1 —— Embedding layers

ensemble member IFS-EPS —— |dentity mapping




PokT: a transtormer U-net

== 3x3 convolution
= 2x2 average pooling

=) 2x2 up-sampling
=== skip connection

Module / Eq. (1)

] N

Farn
WL

\
transformer
)

[
=

dV| Softmax/Eq. (2)

L I |
WValue Key  Query/

AL

transformer

e
- Embedding layers

transformer — |dentity mapping
Transformers at all

levels of the U-net

N N



Rankings

Table 2: Global mean CRPS and EECRPS on the ENS-10 test set (2016—-2017) for baseline models
with five (5-ENS) or ten (10-ENS) ensemble members.

7500 [m? s~ 2] T850 [K] T2m [K]

Metric Model 5-ENS 10-ENS 5-ENS 10-ENS 5-ENS 10-ENS

Raw 81.03 78.24 0.748 0.719 0.758 0.733
” EMOS ’}'QIDS:EG.TBQ 81-?4:|:ﬁ.131 D.?zsﬂ:ﬂ.ﬁﬁz 0-?56:&[’).652 D.?]_S:I:G.DDB O-?49:|:ﬂ.ﬂ54
5 MLP 75.84=0016 74 63927 (0.701F7°* 0.684F**  0.6847%°* (.672F%*
O  LeNet 75.56=° %" 74.41=°'%7  0.689F7°* 0.674F* ' 0.669F7°"* 0.659F**
UU-Net 76.66L°-470 76 25+0-106 ().6871°-003 0_669in.ﬂﬂ9 D_ﬁsgin.nnﬁ 0.644L0-006
Transformer ~ 77.30=°-°°" 74.79=°''%  0.686="°°" 0.665=°°"*  0.649="°°* 0.626="""*

PoET U-net Transformer 73.97 0.650



Better

CRPS
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—nsemble post-processing: Summary

« The ensemble transformer can run on the full operational IFS ensemble, while
preserving inter-member calibration

improving ensemble metrics.

« While the operationalization process might be modeled on existing post-processing work,
there are still notable challenges:

Manipulation and serving of very large datasets, especially at high resolution

Communicating to the public the risks and uncertainties of extreme events
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Physics-free deep learning models

@ NeV\/ mOdelS or replacement Precipitation nowcasting



Z500 RMSE [m? s72]

Growing work on NWP replacement
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Why replace NWP?

« Efficiency
« Efficiency
« Did | mention efficiency?

- Seriously, NVIDIA's FourCastNet is 80,000x faster (per compute node) and 10,000x more
energy efficient than a comparable ECMWEF IFS simulation

« This enables
Very large ensemble forecasts

Data reproduction in near-real-time instead of archiving petabytes of data on slow storage



(b) Lead Time: 36 hours
| FourCastNet NESSS -

FourCastNet

Active challenges

 |Increasing physical realism

- Evidence of large ML-based
ensembles picking up extreme
events missed by NWP

- Adaptation to future climate




| a Temporal consistency
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Observation ] Real/fake !

Tackling new problems: 20— S
Precipitation nowcasting | e [ o -0

generator
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Context Sample consistency
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—» Observation :

« The convolutional LSTM architecture was

created for radar nowcasting (Shi et al.
2015)

? y .‘? - v
. Google's MetNet—Z integrated HRRR GS12/8 £ 0.30/0.02 CRPS - 0.61 €'§|2/a:o.19/oiozcnps:o.69

high-resolution regional NWP model for
a hybrid approach (Espeholt et al. 2021)

« DeepMind + UK Met Office: Deep

generative models of radar (Ravuri et al.
2021)

Chosen 89% of the time over competing .
methods by expert meteorologists 0 5 10 15 20 25 30 A

i 4 = ‘ -
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HRRR conditioning

rrblrrr Abé—b i¢ *  RNN A
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MS-Nowcasting

%3

« ConvLSTM-style generator architecture

« Added adversarial loss using DGMR-style
discriminators

Model forecast

« Condition forecasting layers with HRRR
reflectivity forecast to inject hybrid model

« Several techniques such as channel
stacking and dilated convolutions used to
reduce memory/computation footprint

Observed radar

18]582810 4



MRMS extraction

MRMS extraction
[COMUS [/ Alaska)

HRRR Extraction

[Hawaii)

Operations

HRRR spatio-temporal
Interpolation

<2 min

- Latest radar images from MRMS (in US)
retrieved with about 2 min latency inference

« Model inference is controlled by a
streaming pipeline based on a message
queueing framework

Summaries generation

Vector map generation Summar :s generation
and upload

Vector map generation
ant upload e

streaming is not bound by performance of any
single component

no additional /O costs

« CONUS region is tiled into 8 sectors with
small Overlap Vector map collation

and upload

« Final product generation consists of
making text summaries and shapes for
maps




Concluding thoughts..

« When designing an operational machine-learning-based weather solution, it's important
to always keep the end user in mind

Even for simple post-processing, it's necessary to have automation to continually improve
forecasts

For nowcasting, speed is vital, as is real-time detection of issues

« There is very promising and exciting research in ensemble post-processing and model
replacement, but to operationalize for the public, it will need effective communication

jweyn@microsoft.com
msn.com/weather
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