
Hendryk Bockelmann (DKRZ)

How to use spack – solving the dependency problem

▪ Building your model with netcdf-fortran (modules)

▪ Problem: long list of dependencies like MPI, hdf5, 
parallel-netcdf and netcdf-c not accessible with the 
module system

▪ Solution: use spack to list them all

107.06.2022

$ module load netcdf-fortran/4.5.3-openmpi-4.1.2-intel-2021.5.0

$ module show netcdf-fortran/4.5.3-openmpi-4.1.2-intel-2021.5.0
$ spack find -dp /k6xq5g



Hendryk Bockelmann (DKRZ)

How to use spack – module vs. spack

▪ Module system is easy to use but does not help much for 
building your own software
▪ Users need to set compilation and linking commands
▪ Might lead to unstable binaries, which depend on the loaded 

modules at runtime

▪ Spack is more complex but allows to build packages with 
stable dependencies

▪ Linking paths are written into the binaries so they know where 
to look for their needed libraries

▪ Software can be build completely in user-space -> user can be 
more independent of the software tree (similar to conda)

207.06.2022



Hendryk Bockelmann (DKRZ)

How to use spack – build your own package (I)

Example: you want an older CDO version 

▪ Create your own installation directory and set up the 
spack config accordingly: 

docs.dkrz.de/doc/levante/code-development/building-with-spack.html

▪ Check the existing compilers

▪ Check the available cdo versions

307.06.2022

$ spack compilers

$ spack info cdo

https://docs.dkrz.de/doc/levante/code-development/building-with-spack.html


Hendryk Bockelmann (DKRZ)

How to use spack – build your own package (II)

▪ Select compiler and version and check what spack
would build

▪ Since spack is designed for HPC centers, using MPI is 
default. Can be disabled to speed up building process

▪ If everything looks ok, start the build

407.06.2022

$ spack spec -I cdo@1.9.2 %gcc ^fftw~mpi ^hdf5~mpi ^eccodes

$ spack spec -I cdo@1.9.2 %gcc

$ spack install cdo@1.9.2 %gcc ^fftw~mpi ^hdf5~mpi ^eccodes


