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Emergency responders immediately need to know:

* WHERE are the people in need

« HOW BAD is the situation = the scale of the damage
How can we do it?

* By going to the field and surveying

— often impossible, takes weeks/months for large areas
* By manually checking satellite imagery

- too slow if affected area is large
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Automation is about speed and availability

Mapping:
* one machine: 1,000 km2/h *
 HOT OSM (many humans): < 100 km2/h **

* Azure’s NC24: 24 vCPUs, 224 GB RAM, 4x NVIDIA K80 GPUs, 3.60 USD/hour
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« Machines can also work in parallel > will go as fast as you can pay for
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github.com/rodekruis/ada-azure-batch

- Example: mapping + damage on ~12,000 km2* on Azure with 26 machines (NC12 promo):

completed in 1.2 h, cost 24 EUR

* Super typhoon mangkhut, Philippines, 2018


https://github.com/rodekruis/ada-azure-batch
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STEP 1: BUILDING DETECTION

input: satellite image (RGB, <= 0.5 m/pixel) output: building locations (vector)

e ==

source: Bing Maps (fully automated) or manual input
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STEP 2: BUILDING DAMAGE CLASSIFICATION

1. satellite images, pre- and post-disaster (RGB, 0.5 m/pixel)
2. building locations (vector) output: building damage (vector), 4 classes

source(s): Maxar Open Data or manual input
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Training data: xBD dataset (arXiv:1911.09296)

850k buildings, 45k km2, 4 continents, 19 disasters
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Model architectures:
e Building detection (segmentation): U-Net with ResNet encoder (a.k.a. AlbuNet)

* Building damage classification: pseudo-siamese Net

AlbuNet-34 il
M skip connection (summation) Building before Inception-v3
512
Fully Fully Fully Cross-entropy
skip connection { gf;\cr;emed connected connected Softmax loss
Resnet-34 . s _— .
; o Building after Inception-v3
-
® s 512
= Y 3 3
E & = prl g [ﬁ
- 5 }——F,:
- a £ z g‘i Damage label
a H I —
c 5
£ : 5
o Fully 25 ‘g
connected § = =
block o= £
5 -
w

transposed conv
Axd "2
conv 1x1
'
batch norm

d0i:10.3390/rs12172839

outchnl  outchnl

o

32 32 #Hcels #els

arXiv:1804.08024v1



https://arxiv.org/abs/1505.04597
http://papers.nips.cc/paper/769-signature-verification-using-a-siamese-time-delay-neural-network
arXiv:1804.08024v1
https://doi.org/10.3390/rs12172839

510 4 ;- PERFORMANCE



https://doi.org/10.3390/rs12172839

510 4 ;- PERFORMANCE

Key performance indicators:
e Building detection (segmentation): loU 0.71, MCC 0.68
» Building damage classification, Macro F1 (4 classes): 0.59-0.79
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Key performance indicators:
e Building detection (segmentation): loU 0.71, MCC 0.68
» Building damage classification, Macro F1 (4 classes): 0.59-0.79

Additional observations (d0i:10.3390/rs12172839) :

* Little (<10%) effect on performance of
e world region (continent)
* damage type (water, wind, etc.)
* image parameters (off-nadir angle, panchromatic resolution, etc.)

e Performance strongly influenced by which specific disaster models are

trained and tested on


https://doi.org/10.3390/rs12172839
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510 4 i CONCLUSIONS

* Automated Mapping and Damage Assessment can be useful tools in Emergency Response
* Faster and more often available than current methods
* Model performance tested on a number of disasters in different world areas
* Good enough for first estimates, more work to be done
* Models and framework are fully open source, so that the community can use & improve them

* Automated mapping: https://github.com/rodekruis/automated-building-detection

* Automated Damage Assessment: https://github.com/rodekruis/caladrius
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510 4 - REAL USE CASES
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HOME / DATASETS / Al BUILDING FOOTPRINT IN SOUTHERN GUATEMALA

Al building footprint in southern Guatemala Rode
Kruis

* Typhoon Goni, Philippines 2020

Southern Guatemala: Al predictions of building footprint on Bing Maps images (approxima )16-2019), see

https://github.com/rod emala for hurricane Eta

fautomated-building-detection. Produced in support to D
and lota. Coordinate reference system: WGS 84 [ EPSG:4326

 Hurricane Eta and lota, Guatemala 2020
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* Flash Floods, Zimbabwe 2020
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https://data.humdata.org/organization/netherlands-red-cross
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THANK YOU!

contact: jmargutti@redcross.nl



