Machine learning model of the plasmasphere to forecast satellite charging caused by solar storms.

S. Bianco, I. Zhelavskaya, Y. Shprits, R. Vasile, German Research Centre for Geosciences (GFZ), Potsdam, Germany.

Solar storms can cause serious damages in space and on Earth.

Credits: The Sun

Credits: Nasa

The PAGER project aims to provide forecast of satellite charging, part of it is the modeling of the plasmasphere.

The plasmasphere is a toroidal region of cold plasma around the Earth.

Credits: NASA

Credits: J. Goldstein et al 2007

In PAGER, forecasted solar wind and Kp are used as inputs to the plasmasphere model.

To develop the model we use in-situ density measurements and measured solar wind at L1 and Kp.

Van Allen Probes: density measurements between 6.10^2 and 3.10^4 Km, 1 min resolution ~4 years time span, 9 hour orbit.

Discovery spacecrafts give solar wind features at L1 with 1 min resolution, from OMNIWeb.

Credits: Nasa

Using time aggregates of the features and feedforward network constitutes an effective approach.

PINE model, Zhelavskaya et al. 2017

Input

Feedforward neural network

Output

A8-hour time history of geomagnetic indices Kp, AE, SYM-H, and F10.7

Location

Output

Out

Fully-connected Sequential (no cycles) neural network. The model outputs and reproduces the plasma density in the equatorial plane of the plasmasphere.

We choose $V_{sw} \cdot B_s$ and ρ_p as solar wind features, and we consider history up to three days in the past.

Kp index, v_{sw} · B_s and ρ_p are important for the plasmapause dynamics (He et al. 2017)

Inclusion of proper time history is crucial

0-30min, 30-60min, 1-2h, 2-3h, 3-6h, 6-12h, 12-24h, 24-48h, 48-72h

Current time value, 0-3h, 3-6h, 6-12h, 12-24h, 24-48h, 48-72h

We distribute data in chunks of 35 days to train and test sets to avoid data leakage and cover solar rotation period

Keep together adjacent times when doing the train/test split for time series.

We scale differently the different features since we have different distributions

We checked several numbers of neurons for a network with 1 hidden layer and 15 neurons gave the best RMSE.

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N}(y_i - \hat{y}_i)^2}{N}}$$

We reproduce the main structure of the plasmapause, also during storm times.

We reproduce the erosion of the plasmasphere and the eastward movement.

Future work

Include the model in the PAGER pipeline.

Include the model in a docker container

Check the performance with the PAGER inputs

Try to improve the model

Add new solar wind features.

Include regularization

Try more neural network architectures

We can reconstruct the structure of the plasmasphere, with solar wind and Kp, also during storms.

Dr. Stefano Bianco, bianco@gfz-potsdam.de

